1 ELECTROABSORPTION IN SEMICONDUCTORS: - -

and integrating outward using Numerov’s method.
For large {, the calculated function is fitted to the
asymptotic form (A6) (with 0.59, accuracy) to deter-
mine 4.

The allowed absorption coefficient is proportional to
[see Eq. (3.18)]

X1(&; tn, E" )Xo (€5 L0, E) |2
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X8(E—E"), (A9)
where the factor of 2 is included for spin. In order to
convert the sum over £’ to an integral, we determine
the density of states p(E)=dn/dE by requiring that
the wave function X, [Eq. (A6)] be zero at {=L,
Li.e., 3123 L) 2~ nr],
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(A10)
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The resulting allowed absorption coefficient is
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XY lim I : . (A11)
20,520 £

If we follow Ralph and we do not normalize X; and X,
according to Egs. (A2) and (A7) but instead define
“unnormalized” X;_yy and X,—yx by Egs. (A1) and
(A8), then we get Ralph’s formula

K 4=[4n%/m*n’ (0)12|U(0)[2S(E),
where
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><<s;tn,E>dsA2<tn,E>) . (A13)

(A12)

In Egs. (A12) and (A13), we have restored cgs units,
with the understanding that all quantities to the right
of the summation in Eq. (A13) are unitless. Equation
(A12) differs from Ralph’s result by a factor of 2,
presumably due to spin.
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There is evidence to indicate that some diffusely scattering substances are essentially highly defective
lattices rather than made up of small domains diffracting incoherently with respect to éach other. Equations
have been derived for the diffraction profiles from such lattices; they are of a Cauchy type. Highly defective
lattices are characterizable by a mean defect-free distance rather than a domain size. Several criteria are
presented for distinguishing defect-broadening from domain or particle-size broadening, and procedures are
outlined for the separation of strain and defect broadenings.

I. INTRODUCTION

EFECTS in structures produce displacements in
the positions of atoms. The effects of such dis-
placements on the scattering intensities have been con-
sidered by several workers.!™ In the case of crystals,
these treatments have been confined mostly to cases in
which the concentration of defects is small. On the
other hand, diffusely scattering substances are not
treated as lattices containing a high defect concentra-
tion. Rather, they are commonly regarded as composed
* Research supported in part by Fibrous Materials Branch,
lg‘fonmetallic Materials Division, U. S. Department of the Air
Olrg?: Ekstein, Phys. Rev. 68, 120 (1945).

2 K. Huang, Proc. Roy. Soc. (London) A190, 102 (1947).
3D. T, Keating, J. Phys. Chem. Solids 29, 771 (1968).

of small particles or crystallites or possessing some sort
of a domain structure within the material such that
the different domains diffract essentially incoherently
with respect to one another.*5

At least in carbons, the presence of small particles or
crystallites having sizes indicated by the linewidths of
their diffraction peaks is often not indicated by electron

microscope observations®® or small-angle x-ray scat-

4¢B. E. Warren and B. L. Averbach, J. Appl. Phys. 21, 595
(1950).

5 B. E. Warren, Progressin Metal Physics (Pergamon Publishing
Corp., New York, 1959), Vol. 8 pp. 147-202.

6 H. Brusset, Compt. Rend. 225, 102 (1947); 227, 843 (1948).

7 H. Kuroda, J. Colloid Sci. 12, 496 (1957).

8L.L.Ban, W. M. Hess, and F. J. Eckert, Carbon 6, 232 (1968).

9 R. D. Heidenreich, W. M. Hess, and L. L. Ban, J. Appl.
Cryst. 1, 1 (1968).
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Fic. 1. Comparison of the
calculated profiles of the (220)
and (113) reflections of dia-
mond assuming defect broad-
ening (-—-) and particle-size
broadening (—).
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tering.® 7101 Improved atomic radial distribution curves
of carbon blacks revealed the presence of interatomic
distances much larger than those indicated by the line-
widths of the (%k0) reflections,’>® and careful analysis
of the (00/) reflections indicated the presence of exten-
sive but faulty stacking rather than short stacks of
small crystallites.’15 It was, therefore, proposed!® that
such substances are made up of large but defective
domains rather than small domains diffracting inco-
herently with respect to one another. It appears that
the case of very defective structures needs special
attention.

II. THEORY

For simplicity, we consider a structure containing
one kind of atom. The scattering intensity of a rigid
lattice may generally be expressed as

1(s)
§6)= 7 D ez 1), <0 ()

where j(s) and I(s) are the intensity in atomic and
Thomson units, respectively; s= (2 sinf)/\ is the mag-
nitude of the diffraction vector s; IV is the total number

10 J. Biscoe and B. E. Warren, Phys. Rev. 59, 693 (1941).

1L H. Brusset, J. Deveraux, and A. Guinier, Comp. Rend. 216,
152 (1943).

22 J. R. Townsend and S. Ergun, Carbon 6, 19 (1968).

13 S. Ergun, Carbon 6, 141 (1968).

4S5, Ergun and T. J. Gifford, J. Appl. Cryst. 1, 13 (1968).
( 15 Sj Ergun and T. J. Gifford, J. Chim. Phys. Special Issue, 99
1969).

of atoms in the structure; #(,) is the total number of
interatomic vectors of magnitude l,=|1,| divided by
N, each vector being counted twice. In a lattice of
infinite extent (/) is simply the number of neighboring
atoms at a distance / to any atom. The variables [ and
n(l) characterize the structure. Equations, in set nota-
tion, for / and (/) can be formulated for any given
lattice, and examples are given in the Appendix for a
graphite-like layer and for a diamond-type lattice, both
of infinite and finite extent.

In a highly defective structure, it is necessary to
distinguish between two types of interatomic distance
vectors: (1) those that undergo large changes by random
amounts and (2) those that experience small changes
because of stress. For purposes of distinction, it is
convenient to conceive a defect radius, i.e., a radius
of a sphere of influence, and associate the first type
with vectors which encounter defects and the second
type with those that encounter no defects. We shall
first consider the effect on the scattering intensity of
large random displacements.

Random indeterminacies in interatomic distances, if
sufficiently large, result in the elimination of their con-
tribution to summation in Eq. (1). Essentially, what
we are interested in is the modification of % () in the
equation. Consider a lattice of large extent in which
defects are distributed randomly. If g(/) is the proba-
bility that a distance / can be traversed without en-
countering a defect, the probability of traversing the
distance /+4-dl is g(I4dl) and is given by the product of
separate probabilities that distances ! and dl will be
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F16. 2. Comparison of the
calculated profiles of the (%£0)
reflections of graphite assuming
defect broadening (—--) and
particle-size broadening (—).
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traversed without an encounter since the two proba-
bilities are independent:

gl+ad)=g()+[dg()/di]di=g()g(dD).

Consider a cylinder of unit cross-section area having a
length dI. The probability g(dl) of encountering a defect
when the distance dl is traveled is given by the sum of
the projections on the front surface of all defects lying
within the cylinder divided by the front surface of unit
area, 1.e., mwr? m being the number of defects per unit
volume, and 7 the defectradius. Hence, g(dl) = 1 —marr2dl.
Substitution in the preceding equation and integration
yield

g =emri=g i, @

L, the reciprocal of ma7?, has a significance analogous to
mean free path; it can be termed the mean defect-free
distance. If we are dealing with point defects having
uniform radii 7, an estimate of defect concentration can
be made from the relation of L to the fraction of volume
occupied by the defects. Designating the latter by P,
we have

P=3mlrrd=4r/3L.

If r~1 A and L~50 A, then P~0.03, that is, the defect
concentration is about 39.

As postulated, g(/) modifies #(J) in Eq. (1); that is,
the effective number of neighboring atoms at a distance
! that contribute to the interference function of a de-
fective lattice is g(?)n(Z). Obviously the use of Eq. (1)

.2 .
=5 sin 8

to compute the scattering intensity of a large domain is
prohibitive in that the number of terms in the summa-
tion is very large. However, when #(!) in Eq. (1) is
modified by g(2), if L is sufficiently small, say <40 A,
the number of terms that significantly contribute to the
summation is greatly reduced, and the computation
becomes feasible. For the powder patterns, the inter-
ference function is given by the well-known Debye
equation

] T sin2mrs!
<ez21rs-1> =% gi2msl cose giny do= — .
0 27rsl

Substituting the above equation into (1) and modifying
it with g(J), we obtain

sin2wsl,

Ji)=1+2 g(lq)%(lq)—2 T )

wSlq

In Figs. 1 and 2 are shown, as dotted lines, the computed
intensities of a diamond lattice (L=16 A) and a graph-
ite layer (L=15 A), respectively, using Eq. (3). The
formula for calculating the solid line is described
below.

Equation (1) can also be used to compute the scatter-
ing intensities of lattices of finite extent provided ex-
pressions are derived that modify #(l). It is readily
recognized that the modifying expression depends upon
the shape as well as the size of the particle or crystallite.
For spherically shaped crystallites of radius R, the
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F16. 3. Comparison of defect factor ¢~%Z (—) with particle-
size factors
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and

modifying factor is given by'®
&(x)=1—3x+34%, (sphere) 4)

for disk shaped layers the corresponding factor is given
byl7

ea(x)= (2/m)[cosw—x(1—a?)?] (disk). (5)

In the above equations, x is defined as x=1/2R. It is
understood that we may refer to e(x) as ¢ €(l), or
€(l/2R) as the clarity dictates.

In Fig. 3 are shown g, €, and ¢, as a function of //L or
7/R. It is seen that there are differences in the mode of
decrease of the average number of interatomic distances
with increase in the distance. To observe the effects of
the differences on the profiles of powder patterns, inten-
sities have been computed, using Eq. (3) with g(!) being
replaced by e€(l), for a spherically shaped diamond
crystallite (R=22 A) and a disk-shaped graphite layer
(R=15 A). The results are shown in Figs. 1 and 2 as
solid lines. The radius R=22 A for the diamond sphere
was chosen to obtain a peak height comparable to that
produced by the exponential factor. It is seen that there
is a great similarity in the profiles produced by particle-
size broadening and by defect broadening, especially for
the graphite layer.

In Fig. 4 are shown the (002), (100), and (004) re-
flections of a carbon black before and after correction
for instrumental broadening. The data were taken with
Ag radiation using balanced Rh and Mo filters in trans-

16 L. H. Germer and A. H. White, Phys. Rev. 60, 447 (1941).
17§, Ergun, J. Appl. Cryst. (to be published).
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mission geometry, 0.4° beam slit, 0.2° detector slit, and
medium-resolution Soller slits. From the figure, it is
seen that the differences observed in the plots of Figs.
1 and 2 are readily obscured by instrumental broaden-
ing. It is quite evident that a correction for instrumental
broadening is a prerequisite for meaningful profile
analyses.

The powder pattern profiles of the (%k0) reflections
seen in Fig. 2 are typical of many carbons such as cokes,
chars, blacks, etc. They are characterized by asym-
metric peaks having large linewidths (~twice as much
as those of crystalline reflections for the same dimen-
sion). Assume the intensities of a powder pattern of
carbon are properly corrected for instrumental broad-
ening and other experimental factors. Even then, the
statistical errors, because of low scattering intensities
of carbons, influence of the (00/) reflections, and the
added diffuseness because of large linewidths, render it
difficult to make a distinction between defect broaden-
ing and layer-size broadening based on curve-fitting
experimental data over any single peak. Inasmuch as
electron microscope observations and small-angle scat-
tering do not support the presence of layers having
sizes indicated by linewidths, we may conclude that
the observed profiles are well explained by defect
broadening.

III. PROFILES PRODUCED BY PARTICLE-SIZE
AND DEFECT BROADENING

A direct confirmation of defect broadening is possible
by a careful analysis of peak profiles. In the following
treatment, it is assumed that the observed intensities
are corrected for absorption, polarization, instrumental
broadening, and Compton modified scattering, and are
then normalized into atomic units.’81 Ideally suited
for this purpose are samples that give rise to crystalline
reflections. In this situation, the use of Eq. (1) with
n(l) modified with g(/) or €(Z) becomes impractical when
L or R is large, say >40 A, It is then desirable to use
the lattice-sum technique. In this regard, any given
reflections from a crystallite may be considered as the
(002) reflections in terms of suitably chosen ortho-
rhombic axes and the scattered intensity may be ex-
pressed in the form of a cosine series®:

JO =i 142 X A coszmass),  (6)

g=1

where Z is the mean height of the cell, NZ is the maxi-
mum column height, N4, is the number of cell pairs
that are ¢z apart, and 7o(s) represents the intensity of
the (000) reflections (analogous to K of Warren and
Averbach* or ¥2 of Houska and Warren?’). If the

18 S, Ergun, J. Bayer, and W. Van Buren, J. Appl. Phys. 38, 340
(1967). -

1S, Ergun, J. Appl. Phys. 40, 293 (1969).

% C. R. Houska and B. E. Warren, J. Appl. Phys. 25, 1053
(1954).
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F16. 4. Powder patterns of a heat-
treated carbon black. Original in-
tensity (- - —). Intensity corrected
for instrumental broadening (—).
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columns have uniform heights, 4, is given by
Ag=e=1—¢/N, (7a)

and the stack height H by H=Nz. If the crystallites
are spherically shaped, 4, is identical with ¢, defined in
Eq. (4), ie.,

Aq=e=1-3q/2N+3(q/N)
For disk-shaped layers the corresponding equation is

2 2\ 1/2
Ag=eq= —,:cos“—q— — i(1 — i—) ] (disks). (7¢)
T N N N?

(stacks)

(spheres).  (7b)

For the last two cases, the diameter 2R is related to
N by 2R=NZz. For the defective case considered in this
study, 4, decreases exponentially with ¢, i.e.,

Ag=e99, (defective lattice) (7d)

where Q is the mean number of defect-free cell sequences.

In the last case, the summation in Eq. (6) is extended
to a very large number V.

From an inspection of Eq. (6), we observe that the
peak occurs at s=so=1/Z; therefore, we may change
the agruments of the cosine terms from 2mwgZs to
2mgz(s—so). We further observe that the peak width
2|s—so| at half peak intensity is of the order of 1/Nz
(cf. Scherrer equation?'), and the peak is more or less
confined to s—so values such that NZ|s—so| <1. If
N> 10, we may replace the sum in Eq. (6) by an integral

1

i(5)= 5(5)/ jols) =2 / (@) cos[x(s)]dx  (8)
with ’

x=q/N, ®(s)=2rNz(s—sq). (8"

Simply denoting ®(s) by ¥, the integrated equations
for the three cases represented by Eqgs. (7a)-(7c) take

2 L. Bragg, The Crystalline State, A General Survey (G. Bell
and Sons, London, 1919), Vol. 1, p. 189.
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the forms, respectively,
i(s)=N[sin(®/2)/(®/2) ], (stacks)

1(s)= (3N /4){8[1+ (¥?/2) —cosd— P sind |/P*},
(spheres) (9b)

i(s)= (8N /3m)[3wH(®)/28>] (disks). (9¢)

For the defective lattice carrying out the summation
for g=1 to «, we obtain

(1—u)?

(92)

(defective lattice) (9d)
1—u 14u2—2u cos2nzs

with u=¢7?. In Eq. (9¢), H; is the Struve function of
first order and is tabulated by Watson.? Since the argu-
ment of Hy is less than 2x, the power series representa-
tion of H1(®)/®* converges very rapidly, and numerical
evaluation presents no problem.

If 0> 5, the following simplifications may be made in
Eq. (9d): u~1—1/Q and cos2nZ(s—s¢)~21—2n%2%(s
—50)2 With these simplifications, Eq. (9d) assumes a
Cauchy form:

i(s)=2Q/{1+[2nL(s—s0) I}, (10)

where L=QZ is the mean defect-free distance. It is
quite evident that if the intensity profiles are of a
Cauchy type cf. Warren,® it is in accordance with the
defect broadening proposed in this work. Equations
(92)-(9¢) do not produce Cauchy-type profiles.

The preceding treatment has been confined to defect-
ive lattices of very large extent and to particles or
domains having a uniform size. Equations for diffrac-
tion from small defective domains are readily obtained
by modifying #(l) in Eq. (1) with g(?)e(). When using
Eq. (6), the summation is carried out to a finite value
of N corresponding to the size of the domain. If Eq. (8)
is modified by the exponential coefficient, it still remains
integrable for the shapes considered in this study. To
develop equations for a structure made up of small do-
mains having a size distribution, an @ prior: knowledge
of size distribution is essential. However, if the intensity
profile has a Cauchy form, it is physically unrealistic to
explain it in terms of a particle-size distribution, for it
implies that the largest number of domains are those
containing single cells. This can be shown as follows.
Let there be a large number M of columns, and let the
probability that a given column will contain  cells be
e¢~°™ ¢ being a constant. There will be Me—°™ columns
each containing m cells. The total number of cells V in
the assembly is

© Mee
N=M73 men=———.
1 (1—e)2
In the assembly, the total number of cell pairs that are

2 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, New York, 1952), pp. 328, 666-697.
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q cells apart is given by

> M(m—o) e
m—q)e M= ——
m=gq+1 (1_e~c>2

e %9,

This number divided by N is simply e¢¢ and is the
coefficient of the cosine term. If ¢ is replaced by 1/Q,
the resulting equation will be identical with the de-
fective case.

IV. RELATION OF PEAK HEIGHT
TO PEAK WIDTH

A distinction between defect and more or less uniform
particle-size broadening can be made in a rather simple
manner if the intensities are corrected for strain broad-
ening and Debye temperature effects. As shown below,
the product of peak width and peak height is much
lower for defect broadening. In Egs. (9a)-(9d), the
maximum values of i(s) are factored, viz., N, 2N,
8N /3w, and (14+u)/(1—u)=~2Q, respectively. Thus the
values of ® at which the intensity is one-half the maxi-
mum are readily determined, viz, $=2.78, 3.475, T, 1,
respectively (for the defective case IV is replaced by Q
in defining ®). It follows that in terms of As, the peak
width at half-peak intensity, the peak heights are given

by

1(s0)=2.78/7zAs, (stacks) (11a)
1(s0)=2.60/72As, (spheres) (11b)
1(s0)=2.67/72As, (disks) (11¢)
1(s0)=2/mZAs (defective lattices). (11d)

From a comparison of Egs. (11a)-(11d), we observe
that for the same linewidths, the defect broadening
would give rise to a peak height much less than that
produced by particle-size broadening; the ratios range
from 0.72 to 0.77. This ratio permits distinction between
defect and particle-size broadening. Further, numerical
calculations show that Eqs. (9a)-(9¢) yield very nearly
the same profiles provided N’s are chosen for each case
such that they yield the same height or peak width.

V. BROADENING OF PROFILES BY STRAIN

Small displacements in the positions of atoms or cells
are commonly referred to as strain or distortion. If the
mean square displacements (¢£2) are independent of the
magnitude of the distance, their influence may be
accounted by modifying Egs. (1) and (6) with the
Debye temperature factor exp(—(£?)s?). The widths at
half-peak intensity of the different reflections would not
be altered significantly. Of particular interest is the
case considered by Warren and co-workers*®# for
small random displacements. If negative and positive
strains occur with nearly equal probability, the strain
effects are taken into account by multiplying the coeffi-
cients A4 in Eq. (6) with {cos2wszZ,), in which 2Z, is
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the change in length of a column of length ¢Z. Further,
if the strain distribution is Gaussian the expec-
tation value of the cosine may be approximated by
exp(—2n2%%%Z 2)). For the case in which the mean
square displacement (Z 2) is made up of nearest-neighbor
displacements (Z,2), then (Z 2= ¢(Z:%). Designating

82=27%%72),
the coefficient 4, takes the form

Ag=e"1¢(g). (12)

The Gaussian strain function has been discussed in
detail by Warren. The results obtained in this study are
in accordance with Warren’s conclusions.

VI. SEPARATION OF STRAIN BROADENING

Inasmuch as the Gaussian strain coefficient is a func-
tion of ¢ and s% the separation of strain broadening
from defect or particle-size broadening is obviously
facilitated if intensities are obtained for several orders
of a given reflection. In the case of isotropic strain, all
of the reflections can be used. A general prodecure of
profile analysis is outlined by Warren.® It involves de-
termination of the coefficients of the cosine terms A4, of
intensities of a series of reflections. For a fixed value of
g, aplot of In4 , versus s¢? should be linear [cf. Eq. (12)].
The intercept of the line yields Ine(q) and the slope
—06%. It is clear that the slopes divided by ¢ should be
constant if ¢{Z:2)=(Z 2 and if the strain distribution is
Gaussian. Plots of €(g) versus ¢ should yield information
about the nature of e. This procedure is very general in
that it involves no @ prior: assumptions as to the nature
of 44 nor of (Z2). However, the method is very sensitive
to slight errors in the corrections and handling of data.
Slight errors can result in large fluctuations in the coeffi-
cients obtained.

In the case of defect broadening, the resulting ana-
lytical expression for the interference function permits
a direct and rather simple analysis of the profile. Modi-
fying A, [defined in Eq. (7d)] for the Gaussian distor-

tion effects, we obtain
A= Werasha, (13)

Substituting Eq. (13) into (6) and carrying out the
summation to ¢= », we obtain [cf. (9d)],

1+4u (1—u)?
i(s)= ) (14)
1—u 14+u2—2u cos2nzs
in which
u=e—1/Q+s%s?) (15)

If 62%2<0.1 and 0> 10, Eq. (14) takes a Cauchy form:

i(s) = 1—4:2;%2{1 / [1+(%;%—20))2]} (16)

From Eq. (16), we note that the intensity is one-half
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the maximum when
ASZZ(S—SOOZ)QI/’ITQé‘}“ (62/7"2)30012, (17)

in which sgg; corresponds to the peak position of the (007)
reflections, As is the total width at half-peak intensity
of the peak (007), 2=1/s¢0;, and QZ= L, the mean defect-
free distance. According to Eq. (15), if As for the
different orders of reflection is plotted against se?, a
straight line should be obtained with the slope and inter-
cept yielding the values of 62 and Q. Once this is done,
the observed profiles can be compared with those cal-
culated using (14) or (16).

The direct prodecure outlined above is not necessarily
confined to the case of defect broadening. When modi-
fied with e=9**¢ Eq. (8) takes the form

1
1(s) =2N/ e(x)e=® cos®Px dx, (18)
0

in which »=N#é%? The above equation is integrable for
the three €’s discussed in this study. The resulting ex-
pressions are somewhat cumbersome. However, their
examination revealed that a plot of As versus s¢* would
yield a straight line following an initial curvature, the
slope of the line being equal to ~0.93 §2/7z. Further-
more, the initial slope of the curved section is equal to
0.5 8%/7%, i.e., about one-half of that of the straight sec-
tion. Thus, extrapolation of the plot to zero abscissa can
be made without introducing serious error. The inter-
cept corresponds to 2.78/wNZ and to 3.475/wNZz for
stacks and spheres, respectively.

Having determined the strain and defect or domain-
size-coefficients, the peak heights should be examined
for the effects of the Debye temperature factor if the
peak heights should be used as a criterion for deciding
whether defect or particle-size effects prevail. If the
ratios of the observed heights to those calculated is
independent of the order of reflection, it indicates neg-
ligible Debye temperature effects; otherwise, an expo-
nential decrease with s¢* is expected. The degree of
agreement between the observed and calculated results
should permit an authentic distinction.

VII. DEFECTS IN CARBONS AND METALS

It was recently shown that the coefficients 4, of the
(00?) reflections of a raw and heat-treated carbon black
showed exponential distributions.'**® In Fig. 5 are
shown the observed and calculated powder-pattern in-
tensities (in atomic units) of the (002) reflections of thd
heat-treated carbon black (cf. Fig. 4). From Fig. 5, it is
seen that the profile is of Cauchy type, and Eq. (16)
reproduces the observed profiles faithfully. The equa-
tion based on uniform stack height yields a high peak
height when it matches the peak width or a broad peak
when it matches the peak height (cf. Ref. 15). It may
be argued that the observed profiles could be explained
equally well by particle-size broadening if it is assumed
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that stacking has an exponential distribution. However,
we find direct support for extensive but faulty stacking
from electron-microscope observations of carbons and
additional support from heat-treatment studies. Pro-
gressive sharpening of the (007) reflections as a result
of heat treatment is more plausibly explained by anneal-
ing stacking faults than by stacking of crystallites.
Analysis of the (#%0) reflections from layered struc-
tures presents special problems; such structures tend to
show preferred orientation. The powder patterns yield
(hk0) reflections that have long tails at the high-angle
side. These tails usually have the profiles of other re-
flections superimposed on them. For this reason, it was

found to be desirable to employ a sample that gave rise
to crystalline (4k0) reflections. Ideally suited for this
purpose are pyrolytic carbons and carbon fibers that
show a very high degree of preferred orientation. A
parallel bundle of the latter, when placed in transmis-
sion geometry with fiber axis parallel to the diffraction
vector, yields very symmetric (4%0) reflections. If the
layers are parallel to the fiber axis and otherwise random
in translation and rotation, the interference function in
terms of interatomic distances / is given by
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Equation (3) then takes the form

7(8) =142 gU)n(ly)J o(2msly) , (19)

where J, is the Bessel function of zero order. If g(J) is
replaced by e;(Z), Eq. (19) would give intensities dif-
fracted by disk-shaped layers under the conditions
specified. Equation (19)is ideally suited for small or very
defective layers. The coefficients of the Bessel terms
can be obtained by a Bessel-Fourier transform of the
intensities. As stated earlier, for sharp reflections we
resort to lattice-sum technique and use Eq. (6) and those
that follow it. In this situation, 7o(s) is given by

7o(s)=omF?/167ss,, (20)

where ¢ is the atomic density (atoms/A?) of the layer,
m is the multiplicity factor, and F? is the geometric
structure factor.

An analysis of the profiles of the (100), (110), (200),
(210), and (300) reflections of a carbon fiber showed
them to be of Cauchy type and readily matched by
Eq. (12) or (14). As outlined earlier, a plot of As versus
so? gives a good indication whether the coefficients 4,
are exponential. In Fig. 6 is shown a plot of As versus
s? for all of the (%k0) reflections studied. The fact that
the points belonging to (100), (200), and (300) reflec-
tions fall on a straight line indicates a Gaussian distri-
bution of distortion coefficient and an exponential form
for A, The fact that the points belonging to (110) and
(210) reflections fall on the same line indicates an
isotropic distortion in the layers.

0.5

In Fig. 7 are shown Ine, versus L= gz for cold-worked
tungsten filings and for aluminum filed under liquid
nitrogen (and measured at —160°C). The data are the
intercept values of Warren’s plots of In4, versus s¢? for
different Z’s.5 It is seen that Ine, is linear with ¢; hence,
A, has an exponential form which is in accordance with
Warren’s observations that particle-size broadening is
of a Cauchy type. The slope of the straight lines drawn
correspond to the reciprocal of mean defect-free dis-

[¢] 40 . 80 120 160 200

L=qz
Fic. 7. InA ¢ versus L for cold-worked tungsten and aluminum

filings (data correspond to the intercept values of Warren’s plots
of Az, versus h¢?) (Ref. 5).



3380 SABRI
tances, i.e., ~130 and ~230 A for the tungsten and
aluminum, respectively.

Warren observed that the materials studied were
obviously not fragmented into small separate particles
of sizes indicated by particle-size broadening equations.
Instead, he contended, cold work has produced some
sort of domain sturcture within the filing such that the
different domains diffract essentially incoherently with
respect to one another. The domain concept does not
pretend to explain the form of A,; however, it is
physically unrealistic if A4, decreases exponentially
with g, for as shown earlier, it implies that the largest
number of domains are those containing single cells.
It appears that if physical evidence is lacking for frag-
mentation or for the presence of domains having a
reasonable size distribution, the concept of large defect-
ive domains is physically more realistic. The dimension
that one should seek is not the particle size but the
mean defect-free distance.

APPENDIX

We present a representation of interatomic distances
! and the number #(/) of neighboring atoms at a dis-
tance / from an atom.

1. Graphite-Like Layer Having a Bond Distance I,

L:l=1o(p*+ @+ pg)*?, where p and ¢ are integers such
that >0 and p=>¢=>0.
n(l):n(l)= 3, if ¢g=0and p mod 350
= 6, if¢g=0andp mod3=0
6, ifg=p
= 6, if p#¢##£0 and (p—g) mod 30
=12, if p#£¢5%£0 and (p—¢) mod 3=0.

[=))

Il

We define p mod ¢ as the remainder when p is divided
by ¢. In dealing with disk-shaped layers having a finite
size, an upper limit pmax must be imposed on p. The
upper limit modifies the conditions imposed upon p and

ERGUN 1

¢ in the set / as follows:
pmax 2p>0,
min{p, (pmax’—1p)"*—32p}2¢20.
For the finite size, #(l) as defined above must be multi-

plied by €(l) as defined by Eq. (5).

2. Diamond-Type Lattice Having a Bond Distance [,

L:l=1((p*+g2+77)/3)12, where p, g, r are all odd or
all even integers with p>0. If odd, the additional condi-
tions are p>¢>r, if even, [p>¢>p mod 4 and ¢>7
> (p+q) mod 4 and (r— (p+¢) mod 4) mod 4=0].

If p, g, r are all odd,

{n(D)}, where n(l)=12, ifr=g=p
=12, if p=g==r
=24, otherwise.

If p, g, r are all even,

{n(D)}, where n(l)= 6, if r=¢=0
= 8, if p=q=7r
=12, if p=gandr=0
=24, if p=q#r#0
=24, if p#£g=r#0
=24, if p#£q#0=r
=48, if 0#¢#p#r#0 and r#gq.

In dealing with spherical crystallites of finite size an
upper limit pn.x must be imposed on p. The conditions
imposed upon p, ¢, 7 in the set ! are as follows: If p,
g, v are all odd, ¢<p+1, P4 ¢*<pmax?, r<g+1, and
P @7 < prmas’s

If they are even, p mod 4<q “p+1, P>+ ¢ < pmax®y
(p+4q) mod 4<r <g+1, [r— (p+¢) mod 4] mod 4=0,
and p2+¢*+72<pumax’. For the finite size, #(l) defined
above must be multiplied with () defined by Eq. (4).



